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Abstract 

Understanding the tumour microenvironment (TME) has been made possible in large part by the advancement of single-cell RNA sequencing (scRNA-seq) 
technology. Numerous independent scRNA-seq studies have been published, which is a great resource that offers chances for meta-analysis research. However, 

there are significant barriers to fully utilising scRNA-seq data due to the vast amount of biological information, the notable diversity and heterogeneity within 

studies, and the technical difficulties in processing diverse datasets.  We created IMMUcan scDB, a fully integrated scRNA-seq database that is open to 
nonspecialists and solely focused on human cancer. The 144 datasets on 56 distinct cancer types in the IMMUcan scDB are annotated in 50 domains with 

detailed biological, clinical, and technological data. Four steps comprised the development and organization of a data processing pipeline: (i) data collection; 

(ii) data processing (including sample integration and quality control); (iii) supervised cell annotation using a TME cell ontology classifier; and (iv) an interface 
to analyse TME globally or in relation to a particular cancer type. This framework was utilized to do meta-analysis research, such as rating immune cell types 

and genes linked to malignant transformation, and to investigate datasets across tumour locations in a gene-centric (CXCL13) and cell-centric (B cells) manner. 

An unparalleled degree of thorough annotation is provided by this integrated, publicly available, and user-friendly resource, which opens up a plethora of 
opportunities for the downstream exploitation of human cancer scRNA-seq data for discovery and validation investigations.  

 
Significance: The IMMUcan scDB database is a user-friendly resource for interpreting and analysing tumour -associated single-cell RNA sequencing data, 

enabling researchers to make the most of this information to offer fresh perspectives on the biology of cancer. 
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1. Introduction  

Aside from the tumour cells themselves, the tumour 

microenvironment (TME) has been shown to strongly 

influence the clinical outcome of immunotherapies. 

Therefore, better characterising the cellular composition and 

molecular characteristics of the TME remains an important 

and challenging task that could help not only develop novel 

anticancer strategies but also identify biomarkers, better 

predict outcome to current immunotherapies, and lead to 

optimised personalised treatment strategies. Tumor 

immunology has taken center stage in cancer research due to 

the relative success of immunotherapy in a large number of 

malignancies, but despite recent advancements, the majority 

of cancer patients still either do not respond to therapy or 

eventually relapse and succumb to the disease. Technologies 

for single-cell RNA sequencing, or scRNA-seq, are specially 

suited to investigate the variety of cellular phenotypes and 

molecular pathways found in the TME. They can assist in 

answering a variety of scientific problems, such as 

determining the cell states linked to cancer, forecasting 

intercellular communication, figuring out the mechanisms 

underlying disease resistance, and identifying new drug 

targets. Since the authors of the majority of published articles 

have only addressed a small number of hypotheses and have 

not integrated their data with other complementary studies, 

the ever-increasing number of cancer-related scRNA-seq 
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datasets published in recent years represent a highly valuable 

but under-utilised treasure trove for biomedical research.  

Although it would be easier to retrieve, reanalyse, and 

compare published scRNA-seq datasets if tumor-derived 

single-cell data were integrated into a searchable database, 

this is difficult for a number of reasons: (i) the wide variety 

of cancer types and clinical contexts, including tumor 

location and treatment type, make cancer-related datasets 

extremely diverse; (ii) the use of single-cell technologies, 

experimental protocols, and data analysis techniques; and 

(iii) the biological and clinical interpretation of the findings. 

Recently, scRNA-seq data portals such as scRNASeqDB,1 

SCPortalen,2 PanglaoDB,3 and JingleBells4have been 

developed to address this difficulty. Nevertheless, only two 

databases—CancerSEA and TISCH—are devoted to storing 

information about tumours. The goal of CancerSEA, which 

has integrated 41,900 single cancer cells from 25 different 

cancer types,5 is to find functional states linked to particular 

gene signatures. It incorporates data from patient-derived 

xenografts, cancer cell lines, and human malignancies. Only 

the tumor type annotation is included in the scant clinical 

data. To describe the different cell types that make up the 

TME and examine the expression of target genes and 

signatures, TISCH allows users to search through cancer 

scRNA-seq datasets from both humans (74 datasets) and 

mice (5 datasets).6 Only tumor type, primary versus 

metastatic illness, and treatment are included in the clinical 

annotation. Comparing the target gene expression and 

cellular composition across different datasets is made 

possible by the database functionalities. Our goal was to 

surpass existing initiatives and create a comprehensive, 

integrated, and fully annotated scRNA-seq database devoted 

just to human cancer. In order to create and integrate the 

clinical, cellular, and molecular profiles of various tumor 

types and their microenvironment, this study was conducted 

as part of the European Innovative Medicine Initiative 2 

program's "Integrated iMMU no profiling of large adaptive 

CANcer patient cohorts" (IMMUcan) consortium. Cell types 

and gene expression patterns can be linked to certain clinical 

patterns using the comprehensive clinical annotation 

provided by the IMMUcan database. Additionally, it 

provides a wide range of features for analysing various 

datasets. In order to promote cancer biomedical research in 

the early discovery, hypothesis-generating, and validation 

stages, we believe the database will establish itself as the gold 

standard reference tool. 

2. Materials and Methods 

2.1. Literature search and dataset selection 

We used the keywords ((cancer [Title/Abstract]) AND 

(patient)) AND (single cell RNA sequencing) to search 

PubMed (ncbi.nlm.nih.gov/pubmed/) for peer-reviewed 

published datasets, and "human cancer single-cell rna-

sequencing" as a free-text keyword to search the bioRxiv 

database (www.biorxiv.org) for non-peer-reviewed studies. 

After applying a filter to choose journals published between 

2016 and 2021, we manually examined each article's title and 

abstract to see if scRNA-seq data was available. This 

produced 103 publications total, covering 144 datasets. We 

retrieved the data from Gene Expression Omnibus (GEO), 

ArrayExpress, EGA, and BioProject for all datasets from 

human cancer patients with more than a thousand cells and at 

least 10 samples. We obtained the information from 

BioProject, ArrayExpress, EGA, and Gene Expression 

Omnibus (GEO). Datasets that concentrated on extra biology, 

such as various biopsy sites, treatment details, or longitudinal 

samples, were exempt from the rule regarding the quantity of 

patient samples. We ultimately found 73 datasets 

encompassing 56 distinct cancer indications using these 

filters, and they were added to the IMMUcan scDB. 

2.2. Metadata extraction  

Influenced by the criteria for publishing scRNA-seq 

experiments,7 we extracted the following metadata categories 

from the 144 chosen studies in order to organise the data and 

facilitate effective database searches. The first category 

records study-wide data, such as the number of patients and 

samples, abstract, DOI, title of the publication, and data 

access details. Sample-specific characteristics such cancer 

kind, cancer localisation, response, and treatment are the 

focus of the second category. A third category includes all 

information pertaining to the workflow of applied single-cell 

technology, such as tissue dissociation, cell type enrichment, 

single-cell isolation, library construction, end bias, library 

layout, reference genome, read alignment, read counting, and 

expression value format. Lastly, we also annotated and 

standardised information about the single-cell data in the 

study, such as the tissue, patient ID, time-point and location 

of the biopsy, author annotations, cancer (sub) type, cancer 

stage, enrichment strategy, and treatment information like 

time-point, drug, and response, whenever it was supplied. 

Every metadata, including cell type, cancer type, and 

treatment, was standardised and mapped to ontologies 

whenever feasible. Depending on the type of information the 

metadata can be either free text, a list from a controlled 

vocabulary, Boolean values, or quantitative information.  

2.3. Analysing data   

We downloaded raw read counts whenever possible to 

improve comparison across studies and because they are 

more appropriate for the majority of single-cell analysis 

procedures.8 Each dataset that included several tests or 

indicators of cancer was then divided into distinct files. In 

order to process all downloaded single-cell data efficiently, 

we created a pipeline using the R language called 

scProcessoR. It primarily uses functions from the Seurat 

package (version 3; ref. 9) to log normalise the data, select the 

most variable genes, transform and scale the data using 

principal component analysis, build knn neighbourhoods for 

each cell, cluster the data using graphs, and generate UMAP 

dimensionality reduction plots (Supplementary Figure 1 A). 
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Every stage is carried out semiautomatically in accordance 

with industry best practices.8,10 An expression matrix with 

cells as columns and genes as rows, together with a metadata 

file with the cleaned and standardised data for the samples, 

such as patient information and cell annotations, are inputs to 

the procedure. We used the dataset 

SC_UNB_10X_GSE134520, which contains the single-cell 

transcriptome profiles of nine individuals with early stomach 

carcinoma, to demonstrate the workflow. We eliminated all 

cells with fewer than 250 genes with mapped reads and/or, 

depending on the type of tumor10 include more than 5% to 

20% of mitochondrial specific reads for each dataset in order 

to preserve only high quality data. In order to determine 

whether a dataset has significant technical batch effects, we 

calculated the Shannon entropy, HTC, for each cell in the 

dataset, C, and each possible batch effect type, T (such as 

patient ID), as follows: 

B is the total number of type T batches in a dataset (all   

 

 

 

 

 

Where qb is the proportion of cells from a specific batch 

b, and B is the total number of batches of type T in a dataset 

(for example, all patients). 

A cell with an HTCnorm value of 0 is surrounded 

entirely by cells from the same batch, while a cell with a value 

of 1 has 30 nearest neighbors of C that appear equally 

frequently from all batches of type T in the dataset. We used 

the Harmony package (version 0.1; ref. 11) with the default 

parameters provided to adjust for the appropriate batch 

effects if the median entropy across all cells in a dataset had 

a value of ≤ 0.5 for a particular type of batch effect. 

2.4. Cell type annotation and cell clustering  

With the resolution parameter set to 1, Louvain graph-based 

clustering, which is implemented in the Seurat package12 was 

used to cluster cells from a given dataset unsupervisedly. 

Using the supervised CHETAH method 13 which compares 

each cell in a dataset to a predetermined reference 

compendium using the 500 most variable genes, we first 

carried out automatic cell annotation to assign cell types to 

each cluster. With the exception of the categorisation 

confidence level, which we set to a more permissive value of 

0.05, we employed standard settings. We then manually 

annotated each cluster using these automatic annotations, 

which included the most common CHETAH annotation per 

cluster and aneuploidy over diploidy levels from copyKAT, 

along with a list of cell type-specific markers obtained from 

bibliographic searches. As a result, we followed three cell 

type resolution levels. Ten major cell types, including T cells 

and fibroblasts, were categorised in the lowest resolution, 

known as "annotation major." We increased the resolution of 

immune cell types in "annotation immune," such as CD4 and 

CD8 T cells.  

Lastly, we applied even higher resolution to myeloid and 

lymphoid cell subtypes in "annotation minor" resulting in a 

total of 17 cell subtypes. To be loaded into and shown by the 

web site outlined below, all normalised and annotated 

datasets were saved as Seurat objects and transformed into 

h5ad files by sceasy15 

2.5. Ranking by gene, cell cluster, and dataset  

We calculated three parameters in order to rank genes 

according to their specificity for a particular cell cluster. The 

first metric compares the expression of each gene in the cells 

from a cluster of interest to the expression of each gene in all 

other cells in the sample using Holm-corrected 

nonparametric Wilcoxon rank sum test P values. In order to 

expedite the computation of related P values, bigger datasets 

were downsampled to 20,000 cells at random. We calculated 

log fold changes for each gene as a second metric, comparing 

the average expression of the gene across cells from a cluster 

of interest to the average expression of the gene across all 

other cells in the dataset. The R-based genesorteR tool 

(bioRxiv 10.1101.676379) was used with default options to 

enable users to find datasets where a gene of interest is 

specifically expressed in a cluster or cell type. First, 

GenesorteR calculates an entropy-based score for each gene 

and each cluster across all datasets in the database. The closer 

the score is to 0, the more exclusively a gene is expressed in 

all cells from a single cluster. The program then assigns an 

entropy score to each cluster, ranking every gene. The best 

rank that the gene of interest attained across all of the dataset's 

clusters is then returned for each dataset. A dataset that 

contains a cluster for which the gene of interest received an 

entropy score close to 0 will be ranked near the top, while a 

dataset where the gene of interest is widely expressed across 

all of its clusters will be ranked near the bottom. These best 

ranks are then used to sort the datasets. Cell count, entropy 

gene index, expression and differential expression findings 

for CHETAH, main, immune, minor, and authors annotation, 

metadata of the entire dataset and subsampled h5ad, and 

metadata object have all been precomputed for quick data 

browsing. 

2.6. Analysis of statistics  

In every box-plot, the median value is shown by a horizontal 

line, and the boxes reflect the interquartile range. Outliers are 

shown by colored dots, while whiskers reach the furthest data 

point within a maximum of 1.5 times the interquartile range.  
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2.7. Data availability  

Access to data GEO, ArrayExpress, EGA, and BioProject 

provide all of the public dataset’s that we collected for 

IMMUcan scDB. The public datasets that were processed and 

incorporated into the database, together with all accession 

codes. 

3. Results  

3.1. Development of the IMMUcan scRNA-seq database 

based on literature  

The creation of the IMMUcan scRNA-seq database (scDB) 

involved four primary steps: In order to find human cancer  

scRNA-seq studies, (i) a thorough literature search was 

conducted; (ii) each pertinent article was manually reviewed 

and curated; (iii) the corresponding datasets were gathered 

via web repositories or by contacting the authors; (iv) the 

datasets and all related metadata were processed and 

integrated into the IMMUcan scDB (Figure 2 A). 

 

 

Figure 1: Development of the IMMUcan scRNA-seq database based on literature The creation of the IMMUcan scRNA-seq 

database (scDB) involved four primary steps: In order to find human cancer scRNA-seq studies, (i) a thorough literature 

search was conducted; (ii) each pertinent article was manually reviewed and curated; (iii) the corresponding datasets were 

gathered via web repositories or by contacting the authors; (iv) the datasets and all related metadata were processed and 

integrated into the IMMUcan scDB (Figure 1 A). 

A user-friendly interface allows users to search the 

IMMUcan scDB by integrating all available annotations, 

data, and metadata. This allows users to query datasets based 

on annotated metadata, such as cancer type, treatment type, 

or the presence of a specific cell type (Figure 1 B). Datasets 

can also be ranked by the user according to the precise 

expression of a particular gene of interest in a subset of cell 

types or clusters. After selecting a dataset, the user can 

display the expression of several genes across the clusters or 

against one another, as well as mine the data and visualise the 

cell types and clusters it contains. Additionally, the 

standardised and normalised (batch corrected) files are 

available for download. The successful integration of 103 

publications and their associated information into our 

database resulted in 144 datasets (Figure 1 B). There were 

fifty-six forms of cancer. The most common cancers were 
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glioblastoma (10 datasets, 121 patients; Figure 1 C), breast 

cancer (12 datasets, 187 patients), and melanoma (13 

datasets, 192 patients with melanoma). Acute T-cell 

leukaemia, renal cell carcinoma, and other juvenile tumours 

such as medulloblastoma were less common tumor forms. T-

cell enrichment (15 datasets; Figure 1 C), immune cell 

selection via CD45 enrichment (23 datasets), and single-cell 

suspensions without any prior enrichment (unbiased; 61 

datasets) comprised the majority of the datasets. 

In total, 21 distinct kinds of enrichment methods were 

used in the various investigations. 56% of the datasets, or 

61% of the patients, had known and detailed patient 

treatment. This data makes it possible to perform particular 

analysis, such determining the type of cell and transcriptome 

alterations linked to particular cancer therapies. Last but not 

least, the database includes data produced by eleven distinct 

single-cell sequencing methods, with the majority of research 

using 10X Genomics or SMART-seq2 single-cell sequencing 

(Figure 1 C). 

3.2. Investigation of the IMMUcan scDB  

Depending on cell type we first concentrated on the cell type-

specific use case of identifying cell types overrepresented in 

ICI treatment responders versus non-responders in order to 

illustrate the value of the IMMUcan scDB. In order to achieve 

this, we looked through the scDB interface for datasets 

pertaining to patients who had received immunotherapy.  

The melanoma dataset MEL_IMM_SS2_GSE120575 

was chosen since it has a thorough set of about 17,000 TME 

cells from patients both before and after anti-PD-1 therapy. 

When a dataset is selected, a panel displaying a UMAP 

visualisation of the data is immediately displayed. Cells in 

this figure can be colored based on different levels of 

annotation, such as the patient's treatment, the tissue from 

whence they originated, or the automatic CHETAH cell type 

assignments (Figure 2 A).  

Cell groups can be chosen and deselected, and group 

names and sizes are shown in the interactive legend. A 

pulldown menu adjacent to the UMAP plot enables you to 

restrict the display to a random selection of 10,000 cells, 

which speeds up plotting. A stacked bar chart displays the 

relevant cell type composition of each study sample next to 

the UMAP plot for a specific annotation, such as CHETAH 

cell type assignments. The cell type composition of 

responders and non-responders can be compared by creating 

numerous plots using a clinical annotation, such as "treatment 

response," on top of the bar chart (Figure 2 B). B cells were 

elevated in melanoma patients responding to anti-PD-1 

therapy, according to our bar chart presentation. 

 

Figure 2: Cell-based exploration of IMMUcan scDB looking at B cells involvement in melanoma patients treated with anti–

PD-1. A; UMAP plot of MEL_IMM_SS2_GSE120575 dataset. The cells are colored according to their major 

annotation. B, Bar plots of the percentage of cells per cell types in the whole dataset and per response to treatment status. The 

cell types are colored according to the major annotation. C and D, Expression of MS4A1, a marker genes of B cells, 

visualised on a UMAP plot (C) and violin plot (D). Below violin plots are pie charts representing the proportion of 

expressing cells (“non-zero”) and below the absolute number. The colours correspond to major annotation. E, Table of the 

average expression of genes and differential expression of genes. Here, the top differentially expressed genes of B cells are 

ranked by descending average log2-fold change compared with the rest of the cells in the dataset. 
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The average expression of each gene for each cell type 

and the degree of differential expression of each gene 

between a user-selected cell type and every other cell in the 

dataset are displayed in two gene tables that are automatically 

loaded at the bottom of the page. Each gene's expression can 

be shown as a violin plot (Figure 2 D) and on an extra UMAP 

plot (Figure 2 C).  

The proportion of cells expressing the gene is shown in 

a mouseover (Figure 2 C), and the absolute cell number is 

shown as a pie chart beneath the violin plot to enhance the 

readability of these plots. Additionally, a different UMAP 

plot shows the expression of the chosen gene. The most 

selective gene expression marker for B cells is MS4A1 

(CD20), as demonstrated by our visualisation of the 

expression of the top marker gene of B cells (Figure 2 E). 

3.3. Searching the IMMUcan scDB using genes 

CXCL13 and CXCL9 may be employed as predictive 

biomarkers for checkpoint immunotherapy response, 

according to a recent analysis of many bulk transcriptomic 

cancer datasets.16 We used IMMUcan scDB as a use case for 

a gene-centric search to determine which cell types expressed 

these two genes in various cancer types. The IMMUcan scDB 

shows a heat-map of the gene's average expression in each 

cell type in each dataset in which the gene is expressed when 

a gene is entered in the corresponding search field located at 

the upper right corner of the entry page.  

We looked for CXCL13 and used "annotation minor" as 

a cell type resolution. We found that it is most highly 

expressed in exhausted CD8+ T cells (CD8+ T ex) and T 

follicular helper cells (Tfh) in the majority of cancer 

indications, such as non-small cell lung cancer (NSCLC; Fig. 

3A–C), melanoma (MEL), and basal cell carcinoma (BCC). 

In contrast, and consistent with current research, CXCL9 was 

discovered to be expressed in all myeloid cells, with the 

highest amounts observed in LAMP3-positive dendritic cells 

and macrophages17from a variety of causes, such as 

melanoma, NSCLC, and hepatocellular carcinoma (HCC). 

 

Figure 3: Gene-based exploration of the IMMUcan scDB using CXCL13, a predictive biomarker for immunotherapy 

response. A, Heat-map of CXCL13 expression across datasets (y-axis) and annotation minor cell types (x-

axis). B and C, UMAP plots of BCC_BIA_10X_GSE123813 dataset colored by cell type (minor annotation; B) 

and CXCL13 expression (C). D and E, Coexpression plot of CXCL13 and PDCD1 (PD1), cells are colored according to the 

minor annotation displaying all cell types (D) and only exhausted CD8+ T cells (T CD8 ex) and Tfh (E). The legend indicates 

the cell type with the number of expressing cells and the Pearson correlation coefficient in brackets. F, Venn diagram 

showing the coexpression of CXCL13 and PDCD1 by T CD8 ex (top) and Tfh (bottom). The P value of a hypergeometric 

test is shown in the top-right corner of each plot; a pie chart representing the proportion of expressing cells for one of the two 

genes is in the bottom-right corner of each plot. 
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3.4. Assessing the IMMUcan scDB's gene coexpression  

The co-expression of two genes can also be measured using 

the IMMUcan scDB. In order to accomplish this, the user can 

choose the "Gene X vs. Gene Y expression" panel and input 

the names of two genes after choosing a dataset on the entry 

page. One point is then added to each individual cell in a 

scatter plot. The chosen cell type resolution level determines 

the colour of the cells. All cell types that express both genes 

are listed in the legend along with the number of cells that 

correspond to each gene and the corresponding Pearson 

correlation coefficients. To illustrate the coexpression 

features, we chose the BCC study 

BCC_BIA_10X_GSE123813 because of the high expression 

of CXCL13 in exhausted CD8+ T cells in this dataset. We 

also looked into the coexpression of CXCL13 with PD1 

(PDCD1), another well-known marker for T-cell exhaustion, 

and found highly significant coexpression of the two genes in 

exhausted CD8 T cells with an overlap P value of 2.9×10−5 

(Figure 3 D–F). As CXCL9 expression was limited to cells 

of myeloid origin, CXCL9 and CXCL13 were not 

coexpressed in any of the cell types from the 

BCC_BIA_10X_GSE123813 dataset, which is consistent 

with the findings of the aforementioned gene-based search. 

Consequently, the scatter plot reveals no cells expressing 

both genes, and the Venn diagrams reveal no overlap between 

the CXCL9 and CXCL13 positive cells. 

3.5. Finding typical alterations in the frequencies of cell 

types linked to malignant transformation  

Next, we took use of the availability of a sizeable collection 

of harmonised single-cell datasets to find T-cell and 

macrophage compartment alterations that were consistently 

seen across the TME of various cancer types. The 25 datasets 

from the IMMUcan scDB that included both tumor and 

normal tissue were chosen for this purpose. We next 

compared the variations in T-cell and macrophage subtype 

frequencies with the corresponding variations in gene 

expression patterns linked to malignant transformation.  With 

log-fold change differences larger than 1 and a multiple 

testing corrected P value of 0.001, we discovered 705 up-

regulated and 611 down-regulated genes across 11 cell types. 

Numerous top DE genes were associated with tissue-specific 

genes like alveolar and surfactant genes, as well as 

dissociation-artefacts18 like heat shock proteins. In order to 

eliminate all genes linked to these effects from further 

analysis, we developed a gene blacklist. Heat-shock proteins, 

immunoglobins, mitochondrial genes, tissue-specific genes, 

ribosomal genes, ERCC spike-ins, and other dissociation-

associated genes like DNAses, FOS, and JUN were all 

included in the gene blacklist. Genes that were detected in 

fewer than 20% of the datasets were excluded, and the genes 

that resulted from differential expression were ranked 

according to the average fold change across all datasets 

(Figure 4 A). 

The TME is linked to a sharp rise in regulatory T cells 

(Treg) in a number of cancer types, including NSCLC, CRC, 

and HCC, as illustrated in Figure 4 A. Activated Tregs, in 

particular, seem to be almost entirely found in the TME and 

essentially nonexistent in the comparable normal tissues. On 

the other hand, the proportion of naïve CD4 and CD8 T cells 

in the TME is consistently lower than that of normal tissue 

(Figure 4 A). According to the observed shifts in cell type 

frequencies, we find that genes linked to naïve T cells, like 

TCF7, have much lower expression in the TME, whereas 

genes linked to T-cell activation, like TNFRSF4, TNFRSF9, 

and TNFRSF18, and T-cell exhaustion, like HAVCR2 and 

CTLA4, seem to have higher expression (Figure 4 B). 

Furthermore, in addition to CXCL13, which attracts B 

cells, we also uncover very tumor-specific markers for 

activated Tregs, such as CCR8 and LAYN. Consistent with 

this finding, anti-CCR8 antibodies are presently being 

evaluated in clinical trials for Treg depletion strategies after 

CCR8 was recently discovered to be a tumor Treg-specific 

target.19 SPP1 and APOE are strongly up-regulated in the 

TME of macrophages (Figure 4 B). It's interesting to note 

that while most other indications, such CRC and breast 

cancer, exhibit sharp up-regulations of both genes, this up-

regulation is absent in tumor indications like HCC and 

glioblastoma (Figure 4 C). In NSCLC, SPP1 is thought to 

mediate pro-inflammatory pathways and the immunotherapy 

response20 whereas in pancreatic cancer, APOE is thought to 

encourage immune suppression.21 Given that we find these 

genes to be significantly unregulated in tumor-associated 

macrophages across almost all datasets, it is possible that 

their impact on immune suppression is more extensive than 

previously thought. 

Finally, we present the IMMUcan scDB, a curated, 

easily searchable, and explorable database of scRNA-seq 

studies of the human TME. We demonstrated through three 

use cases that the IMMUcan scDB is a useful tool for 

generating new ideas, validating observations from the 

literature, and offering fresh biological insights. 
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Figure 4: Transcriptional changes between normal and tumor-associated immune cells of 25 datasets from the IMMUcan 

scDB. A, Composition of CD8 (top) and CD4 (bottom) T-cell subtypes in normal tissue and TME. Every dot represents one 

dataset, and the gray line represents samples from the same dataset. Paired Wilcoxon-ranked sum test, Bonferroni 

corrected. B, Top 10 up-regulated and down-regulated genes between normal and tumor-associated cells in a selection of cell 

types. Genes ranked by the average log2-fold change over all datasets and filtered for a prevalence of detection as 

differentially expressed gene in at least 20% of the datasets. C, Log normalised expression of SPP1 and APOE between 

macrophages from matched normal and tumor samples in four selected datasets. CRC, colorectal cancer. 
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4. Discussion  

In recent years, the quantity of scRNA-seq research on 

human cancer has skyrocketed. From common tumor types 

(melanoma, breast cancer, and non-small cell lung cancer) to 

uncommon cancers like atypical teratoid rhabdoid tumor22 or 

less common molecular subtypes like triple-negative breast 

cancer,23 the initial studies offered a comprehensive 

description of tumor cells and TME (also known as the "atlas" 

view). As more patients, samples, and cells are included in 

scRNA-seq "atlas" studies, we expect them to progressively 

concentrate on an even wider range of tumor types. In parallel 

with these descriptive investigations, scRNA-seq has 

recently been used to determine immune checkpoint inhibitor 

responsiveness,25 or mechanisms of resistance.24 As scRNA-

seq technologies become more widely used and accessible, 

the quantity and scope of these hypothesis-driven 

investigations should likewise rise. Comparing several 

anatomical areas, such as the location of primary vs 

metastatic tumours, is another kind of study design.26  

The quantity and variety of scRNA-seq research 

warrants a website that is entirely devoted to human cancer 

datasets, with comprehensive annotation, user-friendly and 

effective search features, and several applied meta-analysis 

techniques. In our opinion, this is the best approach to handle 

the hundreds of datasets that are expected to be generated in 

the upcoming years. The projected integration of recently 

released datasets in accordance with the standardised 

approach that we have developed will receive special 

attention in this regard. We will update the database once a 

month as part of the IMMUcan consortium. Large-scale 

("omics") datasets, particularly those related to 

transcriptomics and genomics, are becoming more and more 

accessible through public data repositories. However, clinical 

annotation—such as the tumor type—is frequently absent or 

restricted to a minimal amount of information. This 

significantly reduces the potential for combining biological 

and clinical data in the analysis and interpretation process.  

This kind of annotation is absent from single-cell portals 

like the Broad Institute Single Cell Portal, UCSC Cell 

Browser,27 and the single-cell expression atlas.28 Tumor type, 

primary or metastatic stage, and treatment type are the only 

clinical details included in cancer scRNA-seq databases like 

CancerSea (5) or TISCH (6). In our research, we manually 

extracted and mapped comprehensive clinical features (9 

items) linked to each patient cohort and dataset to reference 

ontologies. IMMUcan scDB is the sole database devoted 

exclusively to human cancer single-cell transcriptomic 

datasets when compared to the other resources (Table 1). It 

incorporates data from 144 investigations, comprising 73 

datasets. Of all the resources now available, the tumor clinical 

annotations are among the most comprehensive. It is the sole 

database with interactive graphs (enabling to display graph 

according to clinical features of relevance, such as splitting 

graph according to tissue type, treatment, or patients) and 

offers the majority of the functionalities provided by other 

resources. This should enable physicians and biologists to 

compare datasets across clinical contexts and concentrate on 

datasets that match to a specific clinical circumstance. 

Important information on cell kinds, cell states, and related 

signatures should also be included. 

Even in single samples, scRNA-seq produces data from 

a vast number of cells, in contrast to bulk transcriptomics. 

This presents the potential for thorough characterisation of 

cellular clusters and related gene expression programs in 

individual patients, provided that cell counts are enough. To 

find unifying patterns linked to a tumor kind, a particular 

anatomical region, or a therapeutic effect, it is also crucial to 

aggregate the analysis of multiple datasets that meet common 

criteria. Using unique scRNA-seq datasets from four cancer 

types, a recent work created a "pan-cancer blueprint" of 

stromal cell heterogeneity.29 It showed that invading immune 

cells had similar gene expression programs. To find common 

trends and improve statistical relevance to a particular 

clinical situation, we have integrated several samples using 

proven approaches in our IMMUcan scDB. Consequently, 

users can utilise targeted tactics on specific patient samples. 

There are several opportunities for biomedical applications 

with the IMMUcan scDB. Through exploratory analysis, 

hypotheses for additional validation can be generated during 

an early discovery process. When cell type-specific 

signatures from various clinical settings are compared, for 

instance, intriguing mechanisms of immune escape or 

activation or new therapeutic targets may become apparent. 
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Table 1: Comparison of content and functionalities of seven resources gathering human single-cell transcriptomics datasets. 
  

scRNASeqDB SCPort

alen 

Jingle

Bells 

Cancer

SEA 

TIS

CH 

IMMUca

nDB 

Data  Number of datasets 38 66 302 74 79 144 [73]a 

  Number of human 

oncology datasets 

3 2 14 20 75 144 [73]a 

  Number of criteria for 

datasets query 

3 5 3 2 9 7+ 

Sample type  Cell lines X X X X – – 

  Xenograft X X X X – – 

  Mouse samples – X X X X – 

  Human tissues/blood X X X X X X 

Clinical annotations  Tumor type – – – X X X 

  Tissue site – – – X X X 

  Primary vs metastatic – – – – X X 

  Treatment type – – – – X X 

  Response to treatment – – – – X X 

  Cell enrichment strategy – – – – X X 

Availability of 

processed data  

BAM – X X – – – 

  Average gene expression 

per cell type 

– X – X X X 

  Differentially expressed 

genes 

X – – – X X 

  Single-cell object – – 
  

– X 

Gene specific 

functionality across 

datasets  

Gene expression 

distribution 

X X – – X X 

  Signature expression 

among datasets 

– – – – X – 

  Dataset filtering X – – – X X 

Visualisation  UMAP X X – – X X 

  Cluster proportion – – – – X X 

  Gene signature expression – – – – X X 

  Interactive graphs – – – – – X 
aDatasets with integrated data. 
bOnly for integrated reference atlas. 

Finally, our database can be used to validate results 

established in an independent study. On the other hand, 

hypothesis-driven analyses may establish the expression 

pattern of specific genes or signatures according to different 

annotation terms. The growing number of scRNA-seq 

datasets provides unique opportunities for cross-validation of 

results from various technologies, including proteomics, 

genomics, and spatial transcriptomics. A significant step 

forward would be the improvement and generalisation of 

standardised terminologies, such as the human disease 

ontology9 and cell ontology30 as well as a more systematic 

and thorough clinical annotation within existing genomics 

data repositories, along with a unified data storage procedure. 

Because sample quality and dataset annotation depend on the 

quality of the information provided in the original 

publication, integrating so many scRNA-seq datasets into a 

single database carries potential risks and limitations. It is 

undoubtedly difficult and prone to technical biases to handle 

scRNA-seq datasets produced in separate research employing 

different tissue dissociation and enrichment techniques, as 

well as perhaps distinct technology platforms. We have 

incorporated reliable and verified procedures at every stage 

of our processing chain. Equilibrium is the technique we have 

used to lessen experimental bias while integrating various 

datasets. Reiterative clustering is used by Harmony to 

eliminate batch effects between patients and studies. 

Harmony performed well in recent benchmark studies on 

scRNA-seq data integration31-33 and because of its strong 

performance, it is suggested as an integration method above 

techniques like CCA34, Liger35 and UMI downsampling 

(bioRxiv 2021.11.15.468733).  

Furthermore, we evaluated this on a range of IMMUcan 

scDB datasets and found no significant differences between 

harmony and other integration techniques (Supplementary 

Fig. S4). Users may employ their own cross-validation 

techniques to strengthen the validity of their findings, but 

they should be mindful of the restrictions and potential 

biases. In the upcoming years, enhancing the efficiency of our 

data processing will continue to be a primary focus. All things 



81 Dahal and Saurabh / Southeast Asian Journal of Health Professional 2025;8(3):71–82 

considered, we think that the strength and potential provided 

by combining so many datasets greatly exceeds the 

drawbacks and restrictions that come with meta-analysis. We 

anticipate that this resource will make it easier to use publicly 

accessible scRNA-seq datasets to tackle both new and current 

issues in the study of human cancer. 
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